152 research outputs found

    A non-destructive view with X-rays into the strain state of bronze axes.

    No full text
    In this paper we present a new approach using highly surface sensitive X-ray diffraction methods for archaeometrical investigation highlighted on the Neolithic Axe of Ahneby. Applying the sin2Ψ-method with a scintillation detector and a MAXIM camera setup, both usually applied for material strain analysis on modern metal fabrics. We can distinguish between different production states of bronze axes: Cast, forged and tempered. The method can be applied as a local probe of some 100th of μm2 or integrative on a square centimeter surface area. We applied established synchrotron radiation based methods of material strain mapping and diffraction on a Neolithic bronze axe as well as replicated material for noninvasive analysis. The main goal of the described investigations was to identify the effects upon the bronze objects of post cast surface treatment with stone tools and of heat treatment

    Phase formation of a biocompatible Ti-based alloy under kinetic constraints studied via in-situ high-energy X-ray diffraction

    Get PDF
    The biocompatible Ti40Cu34Pd14Zr10Sn2 bulk metallic glass was rapidly heated, also known as flash-annealed, at varying heating rates up to 1579 K/s. Thereby, the phase formation was characterized via advanced in-situ high-energy X-ray diffraction. It has been found that the evolving kinetic constraints can be used as a tool to deliberately alter the crystalline phase formation. This novel processing route permits to select phases to crystallize to a predefined fraction and, thus, to potentially design the microstructure of materials according to a specified property-profile. Consequently, flash-annealing poses a unique synthesis route to design materials with, for instance, good biomechanical compatibility

    Real time investigations during sputter deposition for tailoring optical properties of metal-polymer interfaces

    Get PDF
    Poster presented at the 16th International Conference on Small-Angle Scattering, held on 13-18th September, 2015, Berlin (Germany).Tailoring optoelectronic properties of metal-polymer interfaces using self-assembly of nanoparticles is of crucial importance in organic electronics and organic photovoltaics [1]. In particular, metal sputter deposition on block-co-polymers is one widely used method to fabricate nanostructured metal layers on a large scale exploiting the selective wetting and doping of metals on polystyrene domains [2,3]. In order to obtain full control over the nanostructural evolution at the metal-polymer interface and its impact on optoelectronic properties, we employed a combination of in situ time-resolved microfocus Grazing Incidence Small Angle X-ray Scattering (μGISAXS) with in situ UV/Vis Specular Reflectance Spectroscopy (SRS) during sputter deposition of gold (Au) on thin polystyrene films (PS). We monitored the evolution of the metallic layer morphology according to changes in the key scattering features by geometrical modeling [4] and correlate the nanostructural development to optical properties. The changes of optoelectronic properties induced by metal nanoparticle growth during the sputter deposition process were exemplarily monitored using SRS. The morphological characterization is complemented by X-ray reflectivity and electron microscopy. This enables us to identify the different growth regimes including their specific thresholds and permits better understanding of the growth kinetics of gold clusters and their self-organization into complex nanostructures on polymer substrates. Thus, our findings are of great interest for applications in organic photovoltaics [5] and organic electronics, which benefit from tailored metal-polymer interfaces

    Can understanding reward help illuminate anhedonia?

    Get PDF
    Purpose of review: The goal of this paper is to examine how reward processing might help us understand the symptom of anhedonia. Recent findings: There are extensive reviews exploring the relationship between responses to rewarding stimuli and depression. These often include a discussion on anhedonia and how this might be underpinned in particular by dysfunctional reward processing. However, there is no specific consensus on whether studies to date have adequately examined the various sub-components of reward processing or how these might relate in turn to various aspects of anhedonia symptoms. Summary: The approach to understanding the symptom of anhedonia should be to examine all the sub-components of reward processing at the subjective and objective behavioural and neural level, with well validated tasks that can be replicated. Investigating real life experiences of anhedonia and how theses might be predicted by objective lab measures is also needed in future research

    Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction

    Get PDF
    The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading

    Tools for analyzing large data sets

    No full text

    Feldmessung der spektralen Reflexionsfunktion (BRDF) eines Hausdaches

    No full text
    Available from TIB Hannover: RR 839(1997,30) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore